Name of the project AP09258679 "Molecular-biochemical characteristics of the created mutant germplasm of spring wheat, resistance to leaf and yellow rust, morphometry and grain quality" (0121PK0037) Relevance The project includes the creation and molecularbiochemical characterization of new mutant resources of spring wheat for resistance to leaf and vellow rust. morphometry and grain quality, including the content of important micronutrients and their bioavailability. The integrated approach is based on mutation selection through the application of various doses of gamma irradiation and the rust-resistant the genetic basis of varietv Kazakhstanskaya-19, includes phenotyping using hyperspectral imaging, screening for grain protein content, iron (Fe) and zinc Zn, and their bioavailability, visual assessment of the development of fungal structure and hyperspectral imaging, study of the expression of b-1,3.glucanase and endochitinase genes and determination of their activity as a temporary response to infection by pathogenic fungi and the use of competitive allele-specific PCR (KASP) to determine discrimination of Lr gene alleles. The goal of the project is to study biosurfactant-producing Purpose microorganisms and their applicability for enhanced oil recovery. Objectives Most wheat varieties widely used in agricultural 1. production suffer significantly from fungal diseases, and grain yield losses amount to 50–85%. In this regard, there is a need to create a new germplasm of spring wheat that is resistant to leaf and yellow rust. To expand the genetic variability of spring wheat based on the rust-resistant Kazakhstanskaya-19, and to use induced variety mutagenesis using different doses of gamma irradiation (300, 350 and 400 Gy), new mutant lines (M3–M4) were created generation) for phenotyping for resistance to rust fungal diseases. These mutant resources have been used to determine parameters associated with grain yield and morphometry, as well as to analyze rust resistance characteristics through visual assessment of fungal structure development (detecting hypersensitive response or chlorosis around sites of infection) and hyperspectral imaging (analysis of differences in values reflections in the range from 404 to 2511 nm and to identify candidate compounds that cause stability. Mutant spring wheat resources were assessed based 2. on grain quality characteristics, such as protein content and grain microelements (Fe and Zn). To determine the bioavailability of micronutrients, the mutant lines were screened for the content of phytic acid, which is the main "antinutrient" due to its strong metal chelating ability.

Brief information about the project

	Mutant lines have been identified that are resistant to leaf
	and vellow rust biofortified with grain microputrients and
	and yellow fust, bioloitified with grain incronutients and
	his availability of microalements
	Dioavanability of inicroelements.
	5. Plant D-1,5-glucanases themselves, of
	preferentially in combination with childnase, being
	pathogenesis-related proteins (PBPs), are directly involved
	in defense mechanisms by hydrolysis of b-1,3-glucans and
	chitin, the main structural components of the cell wall
	fungi and inhibit the growth of pathogens. Their roles in
	resistance were studied by determining gene expression as
	transient responses against the phytopathogen and enzyme
	activity. Molecular marker technology as valuable tools
	have been applied to assess genetic diversity, identify and
	select desired genotypes. Competitive allele-specific PCR
	(KASP), one of the uniplex SNP genotyping platforms
	critical for the identification of Lr genes, was used to
	screen mutant wheat germplasm.
Expected and achieved results	In this project, the genetic variability of spring wheat
	based on the rust-resistant variety Kazakhstanskaya-19 is
	expanded using induced mutagenesis through three doses
	of gamma irradiation (300-, 350- and 400-Gy) from a °CO
	source in the laboratory Plant Breeding and Genetics
	TAEA, Selbersdori, Austria. New M5 – M4 generation
	mutant lines have been created. These three radiation doses
	which had an LD50 of 220 Cy for the Kazakhatanakaya
	10 veriety The greated 200, 250, and 400 Cy mutant lines
	19 variety. The created 500-, 550- and 400-0y initialit lines
	were phenotypically identified by the resistance of adult
	plants to leaf and yellow fust. 75 initiate of resistant adult plant M2 mutant lines were selected along with the veriety
	Kazakhstanskava 10. which were characterized for the
	Razakiistanskaya-19, which were characterized for the
	lines of 200 Gy 16 semples of 250 Gy lines and 17 lines
	of 400 Gy lines which significantly exceeded the
	101 400 Gy lines, which significantly exceeded the
	Azakinstanskaya-19 variety in productivity parameters by
	1.0-1.7 times (weight and humber of grains in the main
	Now mutant lines resistant in adult plants to leaf and
	vellow rust were phenotyped for seedlings resistance after
	inconlation with rust in graphouse experiments. The
	hockground of juvanila resistance was analyzed
	microscopically and using hyperspectral imaging to
	identify and/or structural changes in the loof surface that
	cause resistance. Based on the resistance of mature plants
	to leaf and yellow rust and microscopic studies of invenile
	resistance it was revealed that the majority of 75 M2
	mutant lines and generated by gamma radiation doses of
	300- 350- and 400-Gy (89.33%) combined invenile
	resistance with that of an adult plant to both types of rust
	leaf and yellow rust.

Hyperspectral imaging analysis showed that infected leaves of wheat genotypes have increased relative reflectance in visible and near-infrared light compared to uninfected genotypes, with peak mean values at 462 and 644 nm, and 1936 and 2392 nm, respectively. Five spectral indices including Red Normalized Vegetation Index (RNDVI), Structure Insensitive Pigment Index (SIPI), Ratio Vegetation Index (RVSI), Water Index (WI) and Normalized Difference Water Index (NDWI). demonstrated significant potential for determining the degree of resistance of seedlings. The most significant differences in reflectivity between the sensitive and resistant mutant lines appeared at wavelengths of 694.57 and 987.51 nm.

The created lines were assessed according to the morphometric parameters of the grain (area, length, width and thickness of the grain). The mutant lines generated with doses of 350 and 400 Gy, with numbers 8/2 and 25/3, respectively, had the largest grain area (16.2 and 16.5 mm2). The grain length variation ranged from 6.43 to 7.29 mm with an average value of 6.75 ± 0.18 mm in the entire mutant population. Nine M4 mutant lines (28.0%) had significantly longer grains, which is like the grain area parameter found in the 350- and 400-Gy mutant germplasm.

Compared to the morphometric parameters of the grain, such as grain area and grain length, the smallest ranges of variability were observed for grain thickness with intervals from 2.6 to 3.34 mm with an average value of 3.15 ± 0.13 mm in all irradiated lines. 6 genotypes with statistically significant higher grain thickness values than the Kazakhstanskaya-19 variety were identified.

Based on an important characteristic such as grain quality, grain protein content (GPC), it was found that the ranges for mutant wheat germplasms were 9.6–15.6% with an average value of 13.99 ± 1.16 , 12.63 ± 1.49 and 12.43 \pm 1.54% in 300-, 350- and 400 Gy lines, respectively (n = 138). 17 mutant lines (37.0%) were identified, of which 8, 6 and 3 samples represented by 300-, 350- and 400 Gy lines had GPC that was statistically significantly higher than the Kazakhstanskaya-19 variety $(13.95 \pm 0.12\%)$ by 1.08-1.12 times. ANOVA analysis for GPC revealed significant differences between the Kazakhstanskaya-19 variety and the 350- and 400-Gy lines, which indicates the effectiveness of high levels of gamma irradiation for generating genetic variability of GPC. Thus, the mutant lines created by Kazakhstan-19 are new valuable genetic sources, combining plant resistance to leaf and yellow rust with a high GPC.

Of the 18 screened 300 Gy mutant lines (89%), the majority (16 samples) statistically significantly exceeded the Kazakh-19 variety by 1.82–3.19 times in terms of iron

content in grain (CFe3). In 350- and 400-Gy mutant germplasms for CFe3, 15 and 13 lines were screened, respectively. Of which, 14 and 10 samples were characterized by statistically significant higher CFe3 compared to the original variety by 1.43–3.13 times and 1.43–2.42 times. Thus, based on the biofortified ability of Fe in three dosed mutant germplasms, 40 promising samples were identified that are resistant to leaf and yellow rust (LR and YR) and have high indicators of productivity elements.

The ranges of variation in zinc content in grain at 300-, 350- and 400 Gy were, respectively, 42.7-97.3, 72.0-119.5 and 100.2-105.8 mg/kg, with mean values for each dosed germopalasma, 64.43 ± 19.18 , 98.3 ± 10.78 mg/kg, and 102.05 ± 1.43 mg/kg. Identified biofortified by Zn from three mutant germplasms (39 genotypes in total) statistically significantly exceeded the parent variety, respectively, in 300 Gy lines by 1.47–2.77 times, in 350 Gy lines by 2.05–3.40 times and 400 Gy lines by 3.0 times.

The expression of *b*-1,3-glucanase encoding pathogenesis related proteins was studied in the spring wheat variety Erythrospermum-35 (juvenile-sensitive) and 100 Gy- and 200 Gy-created mutant lines and 4 juvenile-sensitive and 4 juvenile-resistant lines, as a temporary reaction to leaf rust. After 24 hours of infection, its level was significantly higher in sensitive genotypes compared to resistant ones. The greatest differences between genotypes appeared at 48 and 72 hours of infection with the ratio, respectively, 32.67 and 2.78 times higher in resistant lines.

The expression profile of endochitinase genes, also encoding pathogenesis related proteins, in the spring wheat variety Erythrospermum-35 and juvenile-sensitive and resistant lines, as a temporary response to leaf rust, shows its reduced level in most sensitive genotypes. Similar to the reaction of b-1,3-glucanase gene expression, that of endochitinase between both genotypes was detected with a long-term effect of leaf rust. The expression level of endochitinase genes was 2.60 times higher in resistant lines, which indicates the manifestation of its protective role during prolonged exposure to the pathogen. Determination of endochitinase activity in the flag leaves of Erythrospermum-35 mutant lines, differing in resistance to leaf and yellow rust at 2 stages of development, reveals that in 2 resistant mutant lines it was 9.73 and 4.30 times higher than that of the Erythrospermum-35 variety. 35.

A KASP marker was developed and evaluated for 6 Lr genes: *Lr1, Lr2a, Lr3, Lr9, Lr10* and *Lr17*. The created mutant lines of the Kazakhstanskaya-19 variety had high frequencies of the "a" resistance allele (0.88) in all six *Lr* genes, which were significantly associated with the resistance of seedlings to leaf rust (LR) and suggest the

	possibility of favorable introgression of the haplotype
	through functional markers. 9 mutant lines were
	characterized by the presence of the "b" allele in the <i>Lr9</i>
	and <i>Lr10</i> genes, with the exception of 1 line with the "a"
	allele in $Lr9$ and 3 lines with the "a" allele in $Lr10$, which
	were sensitive to the progressive development of a number
	of fungal haustorium cells early stage of inoculation
	In general priority fundamental and practical results
	were obtained related to the expansion of the genetic
	diversity of apring wheat the expansion of the genetic
	diversity of spring wheat, the creation and morecular-
	biochemical characterization of new mutant resources for
	resistance to leaf and yellow rust, morphometry and grain
	quality, including the content of important micronutrients
	and their bioavailability. The results of the project
	contribute new knowledge and expand the understanding
	of the mechanisms of resistance to rust diseases. The
	project has high potential for commercialization. Thus, the
	project will make a significant contribution to reducing the
	negative effects of rust, which is the most economically
	important disease of wheat, causing significant crop losses.
	The lack of predictability of the emergence of new rust
	races with high epidemic potential highlights the need for
	additional research efforts to assess the disease
	vulnerability of global food crops before their introduction
	on a large scale.
Research team members with	1. Kenzhebaeva Saule Sagindykovna, Doctor of
their identifiers (Scopus Author	Biological Sciences, Hirsch Index – 5, Researcher ID Q-
ID, Researcher ID, ORCID, if	4381-2016, ORCID: 0000-0003-0238-2607, Scopus
available) and links to relevant	author ID: 56230125100.
profiles	2. Atabaeva Saule Dzhumagalievna, Doctor of
1	Biological Sciences, Hirsch Index – 4, Researcher ID N-
	9656-2014, ORCID: 0000-0002-4704-6909, Scopus
	author ID: 562295975000.
	3. Shoinbekova Sabina Alimzhanova. Doctor of
	Chemical Sciences, Hirsch Index – 2, Researcher ID P-
	2773-2015. ORCID: 0000-0003-0238-2607. Scopus
	author ID: 8370741600.
List of publications with links to	S.S. Kenzhebayeya S.A. Shoinbekoya D
them	Zharassova 3 K D Miatzhanova 1 A Abekova S Sh
	Asrandina Moahid Ahmal Javid New spring wheat mutant
	resources with vellow rust resistance improved grain
	mornhometric parameter and high grain protein content
	Bulletin of KazNII named after Al-Farabi Ecological
	Series 2021 No 3 (68) $55-63$
	https://doi.org/10.26577/FIF.2021.v68.2.06
	$\begin{array}{c} \text{Imps.//dui.org/10.20377/EJE.2021.400.3.00.} \\ \text{Kenzhehavava SS Atahavava SD Sarau E Iron } \end{array}$
	deficiency response and differential expression of iron
	homostasis related gapes in arring wheat (Triticum
	astimum) mutant lines with increased grain iron content
	Crop and Pasture Science 2022 72(2) pp. 127 127 Web
	of Science O_2 Science O_2 , $r_3(2)$, pp. 127–157 Web
	1 of science Q^{-2} , scopus Q^{-2} , percentule – 13. Scopus

	citation index -4, Web of Science citation index - 4. DOI:
	10.1080/15427528.2016.1276990.
	Kenzhebayeva, S., Atabayeva, S., Sarsu, F., Abekova
	A., Shoinbekova S., Omirbekova N., Doktyrbay G.,
	Beisenova, A., Shavrukov, Y.Organ-specific expression of
	genes involved in iron homeostasis in wheat mutant lines
	with increased grain iron and zinc content PeerJ, 2022,
	DOI 10.7717/peerj.13515. Web of Science Q-1, Scopus Q-
	1, percentile – 85. Scopus citation index -2, Web of
	Science citation index - 2.
	Kenzhebayeva, S., Mazkirat, S., Shoinbekova, S.,
	Atabayeva, S., Abekova, A., Omirbekova, N., Doktyrbay,
	G., Asrandina, S., Zharassova, D., Amirova, A.;et al.
	Phenotyping and exploitation of Kompetitive allele-
	specific PCR assays for genes underpinning leaf rust
	resistance in new spring wheat mutant lines. Curr. Issues
	Mol. Biol. 2024, 46, 689–709. https://doi.org/
	10.3390/cimb46010045. Web of Science Q-2, Scopus Q-
	2, percentile – 30.
Patents	-